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VISCOSITY OF A DILUTE SUSPENSION

IN A HIGH-FREQUENCY ELECTROMAGNETIC FIELD

UDC 532.135:538.569F. L. Sayakhov and A. D. Galimbekov

The action of a high-frequency electromagnetic field on a dilute suspension of spherical particles with
a constant dipole moment is studied using statistical mechanics. An expression for effective viscosity
is obtained. It is shown that the shear viscosity of the dilute suspension depends on the frequency,
magnitude, and direction of the high-frequency electromagnetic field. Depending on the frequency
of the high-frequency electromagnetic field, the rotation of the suspension particles is decelerated or
accelerated, with the viscosity increasing or decreasing, respectively. It is shown that the acceleration
of the suspension particles by a high-frequency electromagnetic field (and, hence, the decrease in shear
viscosity) has a resonant nature.

The behavior of suspensions in quasistationary electromagnetic fields has been the subject of much inves-
tigation [1–4]. These studies, however, are not complete because they cover a narrow part of the electromagnetic
radiation spectrum. It is of interest to study the behavior of suspensions in electromagnetic fields of the high-
frequency range (106–109 Hz), which have a number of distinguishing features. It is necessary to take into account
that thermodynamic and hydrodynamic quantities, such as fluid velocity, density, temperature, pressure, etc., vary
much more slowly than electric and magnetic intensity vectors. This means that the oscillation period of a high-
frequency electromagnetic field (HFEMF) is much smaller not only than the characteristic time of the problem
t0 = L/u (L and u are the characteristic dimension and velocity of the problem) but also than the characteristic
time during which the mechanism of phenomena such as viscosity and thermal conduction change. Hence, the
thermohydrodynamic state of a small element of the medium cannot change significantly over the oscillation period
of the HFEMF. Therefore, apparently, the state of the medium is reasonably characterized by thermodynamic and
hydrodynamic quantities averaged over the oscillation period of the HFEMF. It should be noted that studies in this
frequency range as applied to suspensions practically have not been performed.

In the present work, the results of [1], obtained for dilute suspensions in quasistationary electromagnetic
fields, are extended to the case of high-frequency electromagnetic action.

We consider a homogeneous HFEMF. This means that the wavelength in the medium should be larger than
the characteristic dimensions of the problem: λ � L (λ = c

√
ε′/ν is the wavelength, where c is the velocity of

light in vacuum, ν is the HFEMF frequency, and ε′ is the material’s permittivity). This leads to the following
restriction on the HFEMF frequency: ν � c

√
ε′/L. Thus, for channel dimensions of about 0.1 m, ν � 109 Hz and

ν ≈ 106–108 Hz.
The flow is assumed to be isothermal, i.e., the heat sources that arise during the action of the HFEMF on

the dilute suspension are ignored.
Let us consider a suspension of spherical particles which possess constant dipole moment µ. For definiteness,

we assume that the particles have an electric dipole moment and, hence, undergo the action of the electric intensity
vector. With a corresponding change of notation, the results obtained are also valid for a suspension of particles
with a magnetic dipole.

Bashkir State University, Ufa 450074. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika,
Vol. 43, No. 6, pp. 156–159, November–December, 2002. Original article submitted January 30, 2002.

914 0021-8944/02/4306-0914 $27.00 c© 2002 Plenum Publishing Corporation



In view of the aforesaid, the homogeneous HFEMF can be written as [1, 5]

E = E0h = E0 exp (iωt)h0, (1)

where E0 is the amplitude of the electric intensity vector, i is imaginary unity, ω is the circular frequency of the
HFEMF, t is time, h = h0 exp (iωt) is a vector in the field direction, and h0 is a unit vector directed along the axis
about which the HFEMF intensity vector oscillates. The angles defining field directions in spherical coordinates are
given by the formulas

h01 = cosψ sin θ, h02 = sinψ sin θ, h03 = cos θ, (2)

where ψ and θ are the latitude and longitude, respectively.
According to [1], the stress tensor is given by

σik = −pδik + 2η0(1 + 5ϕ/2)γik + nµ(〈ei〉Ek − 〈ek〉Ei)/2. (3)

(It should be noted that in [1] quasistationary fields are considered, and, hence, as was noted above, the expression
for the stress tensor must be averaged over the HFEMF oscillation period.) In (3), the bar denotes averaging over
the HFEMF oscillation period, p is the pressure, η0 is the shear viscosity of the fluid in which the particles are
suspended, ϕ is the volumetric fraction of the solid phase, γik = (∂vi/∂xk + ∂vk/∂xi)/2 is the symmetric velocity-
gradient tensor, vi is the fluid velocity, δik is the Kronecker delta, n is the number of particles, and 〈ek〉 is the
first-order moment of the distribution function.

In the case of dipole spherical particles, the moments of the distribution function are given by the equations [1]

d〈ek〉
dt

= − 1
τ1
〈ek〉+ ωkj〈ej〉+Dæ(hk − 〈ekej〉hj); (4)

d〈eiek〉
dt

= − 1
τ2

(
〈eiek〉 −

1
3
δik

)
+ ωij〈ejek〉+ ωkj〈ejei〉

+Dæ(〈ei〉hk + 〈ek〉hi − 2〈eiekej〉hj), (5)

etc. Here τα = 1/(α(α+ 1)D) are the relaxation times (α = 1, 2, . . .), D is the coefficient of rotational diffusion,
ωik = (∂vi/∂xk − ∂vk/∂xi)/2 is the antisymmetric velocity-gradient tensor, æ = µE0/(kT ), k is the universal
Boltzmann constant, T is the absolute temperature of the suspension, and 〈eiek〉 and 〈eiekej〉 are the second- and
third-order moments of the distribution function, respectively.

To solve system (1), (3)–(5), we use the fact that the relaxation times decrease with increase in the moment
number (τ1 > τ2 > τ3 > . . . ). Hence, for any motion, it is possible to find a number such that the corresponding
moment can be set equal to its equilibrium value in the given field. Next, Lower order moments can be calculated.
The simplest approximation can be obtained if the second-order moment is set equal to its equilibrium value in
the HFEMF. Then, the equilibrium values of the first 〈ei〉0 and second 〈eiek〉0 order moments of the distribution
function are written as [1]

〈ei〉0 = L1hi, 〈eiek〉0 = (1− L2)δik/2 + (3L2 − 1)hihk/2, (6)

where L1 = coth æ − æ−1 is the Langevin function and L2 = 1 − 2æ−1L1. From this we obtain 〈ekei〉0hi =
hk − 2æ−1〈ek〉0. Substituting this expression into (4), we obtain the relaxation equation as a first approximation:

d〈ek〉
dt

= − 1
τ1

(〈ek〉 − 〈ek〉0) + ωkj〈ej〉. (7)

Thus, to calculate the stress tensor (3), it is necessary to know the first-order moment, which is defined by
Eq. (7).

For the HFEMF E (1) with 〈ei〉0 = L1hi (6) and h = h0 exp (iωt), the solution should be sought in the
form 〈ek〉 ∼ exp (iωt). Then, Eq. (7) is written as

iω〈ek〉 = −(〈ek〉 − 〈ek〉0)/τ1 + ωkj〈ej〉. (8)

If only terms of the first order in ωkj are taken into account, the solution of Eq. (8) has the following form
(subscript 1 is omitted):

〈ek〉 = 〈ek〉0/(1 + iωτ) + ωkjτ〈ej〉0/(1 + iωτ)2.
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Next, substituting this solution into expression (3), we perform averaging over the HFEMF oscillation period using
the method proposed in [5]. For this, we separately consider the term

〈ei〉Ek =
〈ei〉+ 〈ei〉∗

2
Ek + E∗k

2
=
〈ei〉∗Ek + 〈ei〉E∗k

4

=
L1

4

(h∗i hkE0

1− iωτ
+
hih
∗
kE
∗
0

1 + iωτ
+ ωijτ

( h∗jhkE0

(1− iωτ)2
+

hjh
∗
kE
∗
0

(1 + iωτ)2

))
(asterisk denotes complex conjugation).

The general expression for the stress tensor averaged over the HFEMF oscillation period becomes

σik = −pδik + 2η0

(
1 +

5
2
ϕ
)
γik +

1
8
nµL1

(h∗i hkE0

1− iωτ
+
hih
∗
kE
∗
0

1 + iωτ
− h∗khiE0

1− iωτ
− hkh

∗
iE
∗
0

1 + iωτ

+ ωijτ
( h∗jhkE0

(1− iωτ)2
+

hjh
∗
kE
∗
0

(1 + iωτ)2

)
− ωkjτ

( h∗jhiE0

(1− iωτ)2
+

hjh
∗
iE
∗
0

(1 + iωτ)2

))
. (9)

For the HFEMF E (1) with the properties h0j = h∗0j , setting E0 = E∗0 and taking into account that for
spherical particles, τ = 3ϕη0/(nkT ), we write the real part of expression (9) in the form

σik = −pδik + 2η0

(
1 +

5
2
ϕ
)
γik +

3
4
ϕæL1

1− ω2τ2

(1 + ω2τ2)2
(ωijh0jh0k − ωkjh0jh0i).

Let us consider simple shear motion (ν12 6= 0 and νij = ∂vi/∂xj is the velocity gradient tensor) with an
arbitrary direction of the HFEMF oscillations. The effective shear viscosity is given by

η = η0 + η0ϕ
(5

2
+

3
4

æL1
1− ω2τ2

(1 + ω2τ2)2
(h2

01 + h2
02)
)
.

Introducing the angles defining the HFEMF oscillation directions by formulas (2), we finally obtain

η = η0 + η0ϕ
(5

2
+

3
4

æL1
1− ω2τ2

(1 + ω2τ2)2
sin2 θ

)
. (10)

An analysis of expression (10) shows that depending on the HFEMF frequency, the effective shear viscosity
of the suspension can be higher or lower than the viscosity without the action of the HFEMF. The following cases
are possible:

1) ωτ < 1. The effective shear viscosity increases with increase in HFEMF intensity. This is explained by
the fact that at given frequencies, the HFEMF decelerates the rotation of the suspension particles, and this always
leads to an increase in viscosity.

2) ωτ = 1. The viscosity does not depend on the action of the HFEMF.
3) ωτ > 1. The shear viscosity decreases with increase in HFEMF intensity. Furthermore, there is a critical

frequency ω∗ = τ−1
√

3 at which the effective viscosity is minimal, which indicates a resonant nature of the action.
At these frequencies, the HFEMF accelerates the rotation of the suspension particles, which leads to a decrease in
viscosity.
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3. E. N. Mozgovoi, É. Ya. Blum, and A. O. Tsebers, “Flow of a ferromagnetic fluid in a magnetic field,” Magn.

Gidrodin., No. 1, 61–67 (1973).
4. A. O. Tsebers, “Flow of dipole fluids in external fields,” Magn. Gidrodin., No. 4, 3–18 (1974).
5. L. D. Landau and E. M. Lifshits, Electrodynamics of Continuous Media [in Russian], Nauka, Moscow (1982).

916


